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Abstract. Autonomic computing has been proposed recently as a way
to address the difficult management of applications whose complexity
is constantly increasing. Autonomic systems will have to diagnose the
problems they face themselves, devise solutions and act accordingly. In
consequence, they require a very high level of flexibility and the ability
to constantly monitor themselves. This work presents a framework, Pan-
dora, which eases the construction of applications that satisfy this double
goal. Pandora relies on an original application programming pattern —
based on stackable layers and message passing — to obtain a minimalist
model and architecture that allows control of the overhead imposed by
the full reflexivity of the framework. A prototype of the framework has
been implemented in C++, freely available for download on the Internet.
A detailed performance study is given, together with examples of use, to
assess the usability of the platform in real usage conditions.

1 Introduction

Large-scale distributed applications are being more and more used. Content-
delivery networks, computing grids, peer-to-peer file-sharing systems, distributed
hash tables, ubiquitous systems: there are many examples and the list keeps
growing. The environment in which these applications are deployed, Internet, is
characterized by its heterogeneity, the rapid evolution of its various components
(hardware, software, but also human) and its lack of reliability. The diversity
of the platforms makes it especially difficult to configure these applications.
Even if this first step is completed successfully, changes and failures may disturb
those choices and annihilate previous efforts. It is then required to ease these
operations by automating them as much as possible. Those observations are at
the origin of the development of autonomic computing [1]. Its objective is to
let the applications diagnose themselves the problems they are facing and solve
them without any external intervention. Of course, issues to be addressed are
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numerous before reaching a satisfying solution. Here, we focus on one of them: the
necessary system support for the development of such autonomic applications.

It is possible to identify several features that must be provided by a plat-
form enabling the construction of autonomic applications. The first and most
important one deals with the flexibility of the applications. It is useless to imag-
ine an application being autonomic if it cannot be modified and reconfigured
dynamically. Numerous kinds of reconfiguration may be considered, and all of
them will have to be supported: from the simple parameterization, to the ad-
dition of non-functional properties likely to drastically change the behavior of
the application. Besides, the application itself is often the best candidate to col-
lect the measurements that allow the analyze of its own behavior. The platform
must then provide the required mechanisms to disseminate these measurements.
It must also ease the interactions among the different components of the sys-
tem: in particular, the platform should be reflexive [2, 3] to give access to the
application current state and observed measurements.

This flexibility that we require should not hinder the performance. This,
however, has not been the approach chosen in current systems where only one of
those properties is developed, but not both. Thus, in the case of platforms specif-
ically tailored for the development of autonomic applications (e.g. AutoPilot [4]
or AutoMate [5]), application flexibility (and hence reconfiguration possibilities)
has not been emphasized and is insufficiently developed to address the diversity
of application needs that we anticipate. At the opposite, in the domains of aspect
programming [6] or component systems [7], a high flexibility is provided to the
applications built but overheads are introduced that greatly impact the achieved
level of performance.

The approach we propose to address this problem builds on an original com-
promise. We put forward an alternative programming model instead of imposing
the use of interpreted language or sacrificing the provided flexibility. This model
consists in the stacking of independent components that communicate by ex-
changing messages. This approach, which — to the best of our knowledge — has
never been applied in this context, is not new and several projects have experi-
mented with it, emphasizing its usefulness and expressiveness. Among the first
works in this domain are x -Kernel [8] and Ficus [9] (an operating system and a
framework for building file systems, respectively). More recently, two new archi-
tecture have been proposed: a modular router, Click [10], and SEDA [11] that
allows to build efficient Internet services. While most legacy systems provides
flexibility through low-level instrumentation (typically at the level of procedure
calls), this programming model allows the definition of a custom intervention
degree through the choice of component granularity. The platform presented,
Pandora, builds upon these techniques and provides a reflexive interface that al-
lows individual components and external applications to dynamically reconfigure
the entire system.

We are now going to present (Section 2) some related work pertaining to
this study. We describe next the architecture model proposed by Pandora (Sec-
tion 3). Deployment, execution and control of the applications built on top of
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it are presented next (Section 4). Next, the platform implementation and some
examples of use of the prototype are described (Section 5). An evaluation of the
performance of Pandora (Section 6) and a few concluding remarks (Section 7)
finish this paper.

2 Related Work

As mentioned before, there exist some platforms that pursue objectives compa-
rable to ours. We are going to detail their characteristics in a first step. Then,
we are going to look at software engineering techniques that relates to the ap-
proach we have followed for the design of Pandora. Specifically, we will consider
component systems and aspect-oriented programming.

2.1 Autonomic Application Platforms

Platforms explicitly dedicated to the construction of autonomic applications are
very few. The originality of AutoPilot [4] comes from its work on the definition
of sensors and the means to access them efficiently. Those same sensors are used
“back way” (to write a value, instead of reading it) to modify the application
parameterization. This is however the only reconfiguration feature provided by
the platform. Accord [12] and its predecessor AutoMate [5] target applications
deployed on grid computing systems. Both were built on top of DIOS [13] for
the construction of objects provided with sensors and actuators that allow them
to be parameterized dynamically. The main originality of this platform comes
from the specification of a language and of a rule execution engine that allow
reconfiguration triggering in response to captured events. Unity [14] also targets
grid applications. It promotes the use of “autonomic elements” and provides
a platform designed to help these elements interact with each others and their
environment. In its current state, however, monitoring facilities are rather limited
(polling values from OGSA [15] compatible services) and reconfiguration is not
supported by the platform itself (it is left to each element to devise their own
strategy).

This rapid panorama of autonomic computing platform shows the limits of
the reconfiguration mechanisms provided to applications. Dynamic parameteri-
zation consists, at best, in choosing between alternative implementations among
a set predefined functionalities. Extensibility and modification of non-functional
properties are barely addressed.

2.2 Software Engineering Techniques

This limited flexibility of existing platforms leads us to consider the approaches
currently in use to address this issue. Two kinds of techniques are clearly put
forward: component systems and aspect-oriented programming.

Component Systems. Legacy component systems — .NET, CCM (Corba
Component Model) and EJB (Enterprise Java Beans) — are actually rather
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poorly adapted to the design of flexible architectures. Coarse component granu-
larity, static component binding, and the limited predefined set of non-functional
properties provided by the component containers contribute largely to this fact.
This has lead to the development of more lightweight systems, with higher per-
formance. Thus, the OpenCOM [7] platform (that builds on the COM component
model) allows for both component and bindings dynamic reconfiguration. This
is made possible by a fully reflexive interface that enables the platform to access
the entire state of the system (the component graph).

The approach followed by Gravity [16] is more original. Each component pub-
lishes a list of interfaces it provides and a list of those it requires. As components
get in and out of the system, bindings are dynamically established so that all
dependencies are satisfied. For our purposes, the main limitation of this tech-
nique is the lack of support for “simple” reconfigurations, like the modification
of a single parameter value.

Aspect-Oriented Programming. Aspect-oriented programming [6] promotes
separation of concerns. Cross-cutting functionalities that are common to several
modules of the same program are isolated (those are the aspects) and “weaved”
with the rest of the application at compile-time or at run-time. The flexibility
of these architectures comes from the relative independence between the various
entities involved (modules and aspects). It is then possible to modify any of them
without disturbing the other elements of the program.

The JAC [17] (Java Aspect Components) platform is the one that is closer
to our objectives. In this case, aspects are encapsulated inside components and
weaved at run-time (which allows dynamic reconfiguration). These components
are also statically configurable to adapt diverse environments. The main limita-
tion of this platform is the lack of support for the reconfiguration of the modules
themselves (those whose functionalities cannot be seen as aspects).

3 Architecture Model for Autonomic Applications

Pandora proposes an original architecture model to build autonomic applica-
tions. This model builds upon the notion of component and event-based com-
munication to provide the flexibility and the adaptability required by such ap-
plications.

3.1 Fine-Grained Independent Components

Autonomic applications are usually considered to be made of a set of relatively
independent modules [18]. Each module is supposed to be able to configure
itself, detect problems when they occur, and — ideally — solve them. Naturally,
all these decisions depend on the state of the system as a whole and modules
cooperate with and monitor each other. In the most recent platforms [12, 14]
modules are the smallest entities manipulated by the system.

We believe, however, that there are advantages in considering a finer subdivi-
sion of modules. In each module, both “business” logic and “autonomic” logic are
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present. These two aspects are very different by nature and should be clearly sep-
arated from each other. Moreover, a large part of the autonomic logic is generic
(threshold triggered alarms, rule processing engine, etc.) and could be reused in
different modules. Even business code benefits from being further divided into
smaller, cleanly bounded, entities. Having an intermediate granularity (coarser
than raw instructions and finer than modules), such entities are much easier to
monitor. With adequate support from the platform, the programmer is able to
easily indicate what are the meaningful variables to monitor and which are the
means to modify the component behavior. Besides, parts of the business code
consists in the implementation of non-functional properties (the cross-cutting
concerns identified by the aspect-oriented programming community) that are
essentially reusable from one module to another.

These considerations have led us to propose an architecture model for auto-
nomic applications based on three layers:

1. components : components are the basic and self-contained building blocks in
the system. Functional and non-functional business code, as well as auto-
nomic machinery, are encapsulated within these objects.

2. stacks: components are assembled to form stacks. A stack defines the nature
of components to be used and the order in which they are chained. This
corresponds to the notion of modules we have mentioned previously.

3. tasks: cooperating stacks form a task, which matches the notion of an appli-
cation, made of several cooperating modules.

Interactions between these three elements are summarized in Figure 1.

Besides, each component may specify a set of parameters, that we name
options, identified by their name and whose value can be configured at run-time
to adapt the behavior of the component. These options may be of different types
(numerical, boolean and character strings). However, we cannot represent every
parameter type with such basic types (e.g. file handles, set of values, etc.). This
is why the model makes it possible to associate a specific pre-processing step
before the parameter is given to the component (e.g. transforming a literal host

Task

Stack

Comp.

Fig. 1. Interactions between Pandora’s elements. Tasks (applications) are made of

loosely-coupled stacks (modules). Stacks are made of tightly-coupled components
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name into a numerical IP address). Having this step performed outside of the
component avoids paying the overhead of these transformations each time a new
component instance is created.

The entire independence of the components is an important characteristic
of the model, and it is worth considering its implications. A component ignores
totally the context in which it is going to be used and interactions with other
components are made anonymously. Thus, the reusability of the component is
strongly guaranteed. However, the main benefit of this aspect of the model for
autonomic applications is simply the very absence of (explicit or hidden) inter-
dependencies between components. This helps simplifying the traditionally hard
problem of the dynamic reconfiguration of the application. In this case, each
component may be safely adapted and modified without having to fear breaking
other components that would depend on him. It must be noted that the problem
is simplified, not solved, as the component continues to interact with others and
radically modifying its behavior might still impact its peers.

The specification of the chaining of components within stacks, together with
their initial parameterization, is made through a dedicated language. In order
to ease its usage and comprehension by the platform end-users, a compact stack
representation has been preferred. However, it would have been possible to use
graph description languages (such as dot [19]) or markup languages (such as
XML) to achieve similar results. It is beyond the scope of this paper to explain
it in details, a full description is available in a previous work [20].

3.2 Event-Based Interactions

Components need to interact with each other. In most legacy component models,
communication is performed through direct procedure invocations. This estab-
lishes a two-way communication channel: the caller chooses the actual method
to call and its arguments and, in the other direction, the callee chooses the value
to return. However, our component model uses one-way event-passing commu-
nication.

Following this approach offers several advantages. The first one is its con-
ceptual simplicity, which contributes largely to the reduction of the component
complexity. A component needs only to define a single interface, the one used
to receive an event. This also contributes to the flexibility, the extensibility
and the modularity of the platform, which is a primary concern when deal-
ing with autonomic applications. Components may be easily inserted within an
established event flow, either to modify it, or, at the opposite to provide, non-
functional properties to the whole stack. This could not be easily achieved with
an interface-based design. In the latter case, such a generic component would
need to implement a large set of interfaces to be composed with all other existing
components. When components are added or removed, generic ones should be
modified.

By favoring the independence of the components, this communication model
is complimentary to the component model we have chosen and helps reinforcing
its objectives of flexibility and reusability.
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Event forwarding between components is one-way, synchronous, and operates
in continuous flow. This means that two components, once the communication
is established, are durably connected to each other. At the opposite, communi-
cations between stacks, seen as a whole, are asynchronous: events are buffered
and consumed whenever the receiving stack decides to do so. It must be noted
that a stack, in itself, does not “communicate” with another stack. Rather it is
a component that chooses to send an event to a stack, rather than to a com-
ponent. Similarly, an event sent to a stack is actually processed by a specific
component in that stack. Having both communication modes available lets the
developer freely choose the best compromise for its application. The number of
stacks in the system is not limited and it is perfectly legal to encapsulate a single
component within a stack. Synchronous communications are much more efficient
(in terms of performance) than asynchronous ones. This is easily explained by
the fact that asynchronous communications provide thread-safe buffering sup-
port, while synchronous ones obviously do not. Another parameter to take into
consideration when choosing between these two modes is that inter-component
communications are anonymous, while inter-stack ones are named. Being en-
tirely stand-alone, a component cannot choose which components to communi-
cate with. This is entirely determined in the stack configuration. In the general
case, a component willing to transmit an event transmits it to its successor, with-
out knowing its identity. At the opposite, stacks are named (different instances
of the same stack are identified by a unique handle or an explicit alias), and a
component chooses the name of the stack it wants to communicate with.

Each component has a single input port and an arbitrary number of output
ports. The usual case for a component is to have one output port. For those with
several output ports, two (mutually exclusive) possibilities exist:

1. switch: switch ports are identified by a rank number and it is possible to con-
figure the stack so that components of different nature correspond to each
port. This matches roughly the switch statement found in most imperative
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Fig. 2. Representation of the different component connections modes. Event are rep-

resented by a circle and uniquely identified by a rank number (events with the same

number are then identical). In parallel mode, each event is sent to all components.

In serial mode, components are chained linearly, events sequentially flows from one

component to the next one. In demux mode, events are demultiplexed and sent to the

component instance that handles the category they belong to. In switch mode, events

are sent to one of several alternative components
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programming languages. The choice of the branch in which to forward a
specific event is determined by the component itself according to its internal
logic.

2. demultiplexing : demultiplexing ports allow a component to classify events.
As soon as a new category is identified, a new port is dynamically created,
while events belonging to an existing category are forwarded to the port with
which it had been previously associated. All demultiplexing branches are of
the same nature (components of the same type are found in the same order)
but made of distinct component instances.

This leads to a wide range of possible component connections when constructing
a stack which are summarized and illustrated in Figure 2.

In modes that create multiple branches (i.e. all but serial), the actual length
and definition of the branches is specified in the stack definition. Events flowing
out of related branches (that is, those stemming from the same branch point)
are naturally merged in the input of the next component in the stack.

3.3 Flexibility and Reconfiguration

Systems manipulated by Pandora exhibit two degrees of flexibility: first, in com-
ponent parameterization and, second, in the chaining of these components. Pa-
rameterization flexibility relates to option usage to modify variables at run-time:
this is rather classical. However, its impact may be of great importance as it is
possible to use options to specify an alternative demultiplexing algorithm or
change an output port in a switch component, modifying the behavior of the
whole application.

The second degree of flexibility exposed by Pandora lies in the specification
of component chaining (the stack definition). When several components provid-
ing different implementations of the same functionality are available, this allows
to choose the solution that best fits the current environment (algorithms trad-
ing CPU utilization for memory utilization are quite common). Moreover, the
model authorizes (and even promotes) using non-functional components. Their
insertion in the stack does not modify the general behavior of the system but
might alter the way further events are processed or induce side-effects. One can
mention the examples of components managing the balance of processing stages
across several machines, the persistence of events they receive, application mon-
itoring, failure detection, synchronization, etc. This last issue is very close to the
approach followed in aspect-oriented programming: by modifying the application
(components in the original definition), it is possible to weave some aspects (by
inserting specific components in the definition).

4 Deployment, Execution and Control

Pandora’s architecture is organized around a micro-kernel in charge of stack ex-
ecution. This notion of micro-kernel references works in the operating system
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domain which gave birth to several generations of minimal kernels, like Cho-
rus [21], L4 [22] or, more recently, Think [23]. In these systems, functionalities
(or services) take the form of independent servers, and live outside the kernel
itself. Similarly, functionalities provided by the kernel of Pandora are as limited
as possible: their implementation within components has always been preferred.
This is the case, for example, of event demultiplexing, inter-stack and inter-
machine communications, access control, event persistence, etc. In consequence,
the main attributions of micro-kernel are to manage the deployment of the ap-
plications, supervise the execution of the stacks and implement the reflexive
interface of the platform.

4.1 Libraries and Resources Management

Pandora components come within standard dynamic libraries. To deploy an ap-
plication in Pandora consists in deploying the libraries containing all components
in the stack, together with the appropriate configuration files. Pandora uses two
kinds of configuration files: stack definitions and library descriptions. The first
one contains any number of textual stack specifications expressed in Pandora
architecture description language. The second one deals with libraries: it lets
Pandora know in which library each component is, and the location of each li-
brary. This location may refer either to a file in the local file system or be an
URL, which allows its loading from a remote location. Having these different
schemes to access library code allows to build and maintain organization-wide
component repositories without requiring participating nodes to share a single
remotely mounted file system. Library description files also contain information
to specify inter-library dependencies, which are automatically taken care of by
the platform.

The different configuration files (stack and library descriptions) are named
“resources”. In order to ease their management (many such files may be required
to run a single application), Pandora uses “meta-resource” files (or simply re-
source files) that contain a list of locations (file or URL) of other resources. Each
such resource is accompanied by a priority which tells the order in which they
should be visited. These resource files are considered as resources themselves.
This makes it possible to organize resources hierarchically by inserting locations
of other (sub-)resources in a higher level resource file. Then, one can build an
entire resource tree whose leaves would be stack and library descriptions while
resource descriptions would be its nodes. In this end, this means that it is pos-
sible to boot strap a whole system from one URL.

4.2 Execution

Stacks are the base entities considered by the platform regarding application
execution. To guarantee the integrity of the system, the platform performs a
verification stage before starting the actual execution of a stack. It checks the
correctness of the stack definition, together with the compatibility of component
bindings according to the event types they declare supported for input and
output (respectively).
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The execution phase starts with the creation of a thread in which the stack
will be executed. Each stack is run in its own thread and, respectively, each
thread contains at most one stack. This one-to-one mapping between stacks and
threads has two advantages. The first one is conceptual: the notion of thread
is entirely abstracted and the programmer does not have to worry about it.
If she wants her application executed in concurrent threads, she just needs to
put her components in separate stacks. The second advantage comes from the
guaranty that all components within a stack are executed in a single thread.
There is no need, then, to synchronize accesses to stack scoped resources: they
are made sequentially. As the number of stacks in the system is not limited, and
because stacks can be connected in an arbitrary way, it is perfectly legal to split
a single logical module into multiple stacks to allow intra-module concurrency
and asynchrony.

Tasks are not explicitely defined by the programmer but dynamically created
and managed by the platform to be the connected components of the undirected
graph whose nodes are stacks and edges are communication channels established
between stacks. For example as stack A sends its first event to stack B, the tasks
of A and B are merged. This notion of task is used by the platform to allow
specific communication modes (see below, in the next section, sensors and mon-
itors) and to collect dead stack cycles (in the garbage collection terminology). It
is clear from this operational definition of tasks that, like stacks, their number
is not limited in the system.

The kernel is also responsible for the management of each component life-
cycle. As events are produced and transmitted, next components are created
lazily, only when they first appear as the destination of an event. Pandora main-
tains access counters for each component so that it can terminate every com-
ponent that has become inaccessible after the breaking of a connection. This
mechanism, which builds on the explicit termination of component bindings, is
complemented by a timeout-based mechanism which collects components after
a configurable (possibly infinite) period of inactivity.

4.3 Introspection and Dynamic Reconfiguration

We have said how much needed was flexibility for autonomic applications. This
is expressed both in the ability to tune such applications as finely as possible,
but also in the possibility to reconsider choices as the environment in which the
applications are executed evolves.

The entire configuration of the platform and its current state are exposed by
the micro-kernel through a reflexive interface. Stack definitions, option values,
resource lists: every aspect of the system that is configurable in a configuration
file is accessible through this interface. Furthermore, for each element, it is possi-
ble to choose whether to modify the stored definition or its active representation
(dynamically modifying the platform behavior). Stack management is also ex-
posed, so that it is possible to know the list of running stacks or request to start
a new one or stop another one.
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Among these operations, the dynamic reconfiguration of a running stack must
be given special consideration. Contrary to all the others, this manipulation
implies modifying running component instances and bindings between them. As
Pandora components are considered stateful, by default, the platform must pay
attention to avoid removing components if not strictly necessary. Pandora does
so by computing the minimal set of transformations needed to go from the old
definition to the new one in terms of component additions and removals. After
a removal stage, remaining component are re-linked to each other inserting new
component instances as required by the definition.

A meta-object protocol makes these various reconfiguration operations ac-
cessible from applications external to the platform. Pandora provides an in-
terface for this protocol in several programming languages, including C, C++,
Perl and Guile. Guile [24] is an implementation of the Scheme language and
may be used to write scripts with all the standard construction of the original
language (procedure definition, flow control, etc.) augmented by primitives ac-
cessing the kernel reflexive interface. The ability to write such “control scripts”
is original to Pandora and eases the rapid prototyping of (partially) autonomic
applications.

However, for autonomic applications to analyze and reconfigure themselves,
the utilization of the above protocol is not optimal in terms of performance, as
it is designed to allow external applications to interact with the platform. When
accesses are made from within the autonomic application (the task in Pandora’s
terminology), much of the overhead required to locate the targeted option in the
system and to serialize the results in the response can be avoided. We have then
introduced a specific mechanism that allows a component to “publish” values
and make them accessible to all other components within the same task. This
operation is made through a dedicated object that we have called a sensor. Each
sensor is given a name and several component instances may update a single
sensor. Accesses are made through another object, called a monitor. Monitors
are initialized with a set of sensor names they are related to and with a function
to apply to the values in order to process them. When this function is actually
called depends on the access mode that was chosen for the sensors. There exist
two different access modes: a passive mode where monitors pull the values from
the sensors when they need it, and an active mode where sensors push the values
to the monitors as soon as they are modified. Choosing the best appropriate
mode depends on the relative read and write frequencies of monitors and sensors,
respectively. Finally, an automatic mode is provided that let the platform do this
choice according to access counters it maintains.

5 Implementation

A prototype of this architecture has been developed and has been used in several
applications. We present them here briefly.
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5.1 Prototype

We have developed a software platform that implements the architecture we
have described. It represents more than 50 000 lines of C++ code and, besides
the kernel, is made of about 100 components. Approximately a third of those
are “base” components: these are components that implement non-functional
properties and that may be used in any stack.

Pandora has been ported and tested on a large number of systems, including
Linux, FreeBSD, NetBSD, Solaris, Digital Unix (Tru64) and, for the kernel and
base components only, Win32. The platform is distributed in its most recent
version under an open-source license by INRIA (free for non-commercial use) at
the following URL: http://www-sor.inria.fr/projects/relais/pandora/.

5.2 Applications

The Pandora platform has already been used in several projects [20, 25–27].
However, the application that emphasizes most the flexibility of Pandora and
the features it offers to build autonomic applications is C/SPAN [28]. C/SPAN
is an autonomic Web proxy cache that builds, for the one part, on C/NN [29], a
flexible Web cache, and, for the other part, on a HTTP monitoring stack on top
of Pandora. In this system, C/NN and Pandora are in a tight interaction loop:
C/NN, according to its environment (disk space, request rate, etc.), tunes the
behavior of Pandora using its reflexive interface. Respectively, Pandora recon-
figures C/NN according to the traffic patters it observes.

6 Performance Evaluation

In this evaluation of the performance of the platform, we have focused on two
specific points: the overhead related to the application slicing into components
and that related to introspection operations.

All tests have been performed on the same machine which uses a 2.4 GHz
Pentium IV processor, running the version 2.6 of the Linux operating system.
The measurements that we present are computed from the average of 50 succes-
sive runs. The standard error associated with these averages has never gone over
1%. The various procedure execution time have been measured with a loop that
executes each one million times. Total execution time expressed in milliseconds
gives then the cost a single iteration expressed in nanoseconds.

6.1 Component Traversal

To evaluate the overhead related to the slicing into components, we have mea-
sured the time needed for an event to flow through one component, i.e. the time
needed to go from one component to its successor. Results presented in Fig-
ure 3 show that this time is about 50 ns. Given the other measurements we have
performed, we see that this time is superior to the one needed to make simple
library calls, but inferior to the one required to make a floating-point division
or a system call. This indicates that for non-trivial applications (those that ac-

http://www-sor.inria.fr/projects/relais/pandora/
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tually do something between each event transmission), the overhead related to
the slicing is rather limited, if not negligible.

6.2 Introspection Primitives

To monitor its own behavior, an autonomic application must permanently watch
the sensors it is provided with. At the opposite, reconfigurations are supposed
to happen only in exceptional circumstances. Then, the most performance crit-
ical operation for those applications is the reading of a sensor value, and this is
the one we have chosen to evaluate. For the sake of comparison, we have also
measured the time needed to read a standard variable when using the reflexive
interfaces of two languages commonly used to build flexible applications: Java
and C#. In each language, we have reduced the operation to its most simple ex-
pression: reading the value of an integer field of an object instance. In both cases,
the code used is a one-liner. For Java, we have used different virtual machines,
with and without dynamic compilation (Just In Time). We have also statically
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compiled the program into native code using the GNU compiler [30]. For C#,
we have used the Mono [31] environment whose virtual machine supports both
static and dynamic compilation. The results of these experiments are shown Fig-
ure 4. Rather than studying the relative performance of compilers and virtual
machines compared to each other, what we would like to focus on are orders of
magnitude. Pandora sensors (in passive mode) are about 20 times more efficient
than natively compiled Java code. The latter, however, corresponds roughly to
the time spent when using Pandora options through its external interface. Un-
surprisingly, the use of true virtual machine (no static compilation) degrades
performance further and the absence of dynamic compilation makes them really
catastrophic. This shows how Pandora, for an equivalent CPU load, can support
a much higher number (one or two orders of magnitude) of sensors, and thus of
applications compared to languages that have been usually used in this domain.
It is Pandora specialization in these tasks (the platform has been designed and
optimized for this exact purpose), as opposed to the necessary generic approach
of a high-level programming language, that explains those differences.

7 Conclusion

We have presented Pandora, a platform for the construction of autonomic ap-
plications. Pandora builds on an original programming model, the stacking of
components communicating with message exchanges, that provides a compro-
mise between flexibility and performance. The resulting Pandora component
model is much simpler than legacy approaches that proceed with standard func-
tion calls. The architecture of the system is organized around a micro-kernel
that is responsible for managing the system resources (configuration files) whose
hierarchical organization eases large-scale deployments. It is also responsible for
the chaining of the components according to specified configurations. Its last
role is to expose a reflexive interface and propose the necessary abstractions for
an application programmer to dynamically configure and reconfigure the entire
system. This architecture has been implemented — the prototype is available
freely on the Internet — and several applications have already used it. A per-
formance evaluation of the system has shown that its implementation backs up
our initial objective to reconcile flexibility and performance.

With Pandora, autonomic application developers needs only to concentrate
in implementing the “business logic” of their application. The platform indeed
factorizes out most non-functional aspects of the application and provides useful
abstractions to deal with monitoring. After some initial effort required to design
the application according to Pandora’s programming model, easy and powerful
deployment and administration support is provided by the system. More im-
portantly, Pandora also makes the application highly flexible and dynamically
reconfigurable, basically for free.
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